User Dependent Features in Online Signature Verification
نویسندگان
چکیده
In this paper, we propose a novel approach for verification of on-line signatures based on user dependent feature selection and symbolic representation. Unlike other signature verification methods, which work with same features for all users, the proposed approach introduces the concept of user dependent features. It exploits the typicality of each and every user to select different features for different users. Initially all possible features are extracted for all users and a method of feature selection is employed for selecting user dependent features. The selected features are clustered using Fuzzy C means algorithm. In order to preserve the intra-class variation within each user, we recommend to represent each cluster in the form of an interval valued symbolic feature vector. A method of signature verification based on the proposed cluster based symbolic representation is also presented. Extensive experimentations are conducted on MCYT-100 User (DB1) and MCYT-330 User (DB2) online signature data sets to demonstrate the effectiveness of the proposed novel approach.
منابع مشابه
Use of the Shearlet Transform and Transfer Learning in Offline Handwritten Signature Verification and Recognition
Despite the growing growth of technology, handwritten signature has been selected as the first option between biometrics by users. In this paper, a new methodology for offline handwritten signature verification and recognition based on the Shearlet transform and transfer learning is proposed. Since, a large percentage of handwritten signatures are composed of curves and the performance of a sig...
متن کاملOffline Signature Verification Using Surf Feature Extraction and Neural Networks Approach
In this paper we will evaluate the use of SURF features in handwritten signature verification. For each known writer we will take a sample of three genuine signatures and extract their SURF descriptors. In this paper, off-line signature recognition & verification using neural network is proposed, where the signature is captured and presented to the user in an image format. Signatures are verifi...
متن کاملClassification of Features into Strong and Weak Features for an Intelligent Online Signature Verification System
This paper presents an efficient algorithm for the classification of features into strong and weak features for every distinct subject to create an intelligent online signature verification system. Whereas Euclidean distance classifier is used for validation processes and low error rates obtained illustrate the feasibility of the algorithm for an online signature verification system. Keywords-S...
متن کاملOnline signature verification using segment-level fuzzy modelling
This study presents a new online signature verification system based on fuzzy modelling of shape and dynamic features extracted from online signature data. Instead of extracting these features from a signature, it is segmented at the points of geometric extrema followed by the feature extraction and fuzzy modelling of each segment thus obtained. A minimum distance alignment between the two samp...
متن کاملGlobal feature selection for on-line signature verification
A large number of features can be used to represent on-line handwritten signatures in verification tasks. Depending on the signature database and acquisition conditions, some features will not help in separating writers in the feature space so that an appropriate decision boundary will be hard to estimate. Other features will provide good separability between legitimate system users and their f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1611.10104 شماره
صفحات -
تاریخ انتشار 2013